Ringkasan

Satu Platform AI Untuk Tiga Perkhidmatan KDN

Platform ini membolehkan KDN menggunakan AI untuk menjawab soalan parlimen, membantu rakyat di JPN, dan melayan pertanyaan di PDRM. Semua dalam satu sistem yang selamat dan mematuhi undang-undang Malaysia.

Mematuhi OSA, CGSO, PDPA Data kekal di Malaysia Siap dalam 24 bulan
7
Lapisan Seni Bina
3
Aplikasi Utama
24
Bulan Projek
99.9%
Sasaran Uptime

Ringkasan Eksekutif

Projek AI KDN merupakan inisiatif transformasi digital oleh Kementerian Dalam Negeri (MOHA) untuk memanfaatkan pengkomputeran awan dan kecerdasan buatan bagi meningkatkan penyampaian perkhidmatan awam. Platform ini meletakkan Malaysia sebagai peneraju serantau dalam transformasi digital kerajaan.

Dibangunkan sepenuhnya di atas AWS Malaysia Region dengan pematuhan penuh kepada keperluan keselamatan kerajaan, platform ini menawarkan penyelesaian GenAI-as-a-Service yang boleh diskala untuk memenuhi keperluan pelbagai agensi.

Cabaran Semasa

  • Jawapan parlimen memerlukan pencarian manual yang memakan masa
  • Rakyat perlu menunggu waktu pejabat untuk pertanyaan JPN/PDRM
  • Tiada sistem AI yang mematuhi CGSO untuk sektor awam
  • Kos tinggi untuk infrastruktur AI on-premise

Penyelesaian Platform

  • RAG Pipeline automatik carian dokumen dalam saat
  • Chatbot 24/7 berbilang bahasa untuk rakyat
  • AWS Secure Landing Zone dengan pematuhan penuh
  • Model pay-as-you-go tanpa pelaburan modal besar

USR Sasaran Pengguna

KDN
Pegawai KDN
Soal Jawab Parlimen
JPN
Staff JPN
Pengurusan Chatbot
PDRM
Staff PDRM
Pengurusan Chatbot
MYS
Rakyat Malaysia
JPN & PDRM Chatbot

Arkitektur 7 Lapisan

Platform KDN GenAI menggunakan pendekatan berlapis untuk memastikan keselamatan, kebolehskalaan, dan penyelenggaraan yang mudah.

Arkitektur

Kenapa 7 Lapisan?

01
Pengasingan (Isolation)
Setiap lapisan diasingkan sepenuhnya untuk keselamatan maksimum. Jika satu lapisan terjejas, lapisan lain kekal selamat. Ini mengikut prinsip "defense in depth" yang disyorkan oleh CGSO dan amalan terbaik AWS Well-Architected Framework.
02
Kebolehskalaan (Scalability)
Setiap lapisan boleh diskala secara bebas mengikut keperluan beban kerja. Contohnya, jika trafik API meningkat, hanya lapisan Compute perlu ditingkatkan tanpa menjejaskan lapisan lain. Ini membolehkan pengoptimuman kos yang lebih baik.
03
Penyelenggaraan (Maintainability)
Kemas kini, patch keselamatan, atau penambahbaikan boleh dilakukan pada satu lapisan tanpa menjejaskan operasi lapisan lain. Ini membolehkan zero-downtime deployment dan mengurangkan risiko kegagalan sistem secara keseluruhan.
04
Pematuhan (Compliance)
Struktur 7 lapisan memudahkan audit dan pematuhan CGSO, PDPA, dan ISMS. Setiap lapisan mempunyai kawalan keselamatan tersendiri yang boleh diaudit secara berasingan, memenuhi keperluan SOC 2.0 dan standard kerajaan Malaysia.

Infrastruktur Cloud

Seni bina cloud komprehensif untuk platform KDN GenAI - Landing Zone, VPC, High Availability, dan Monitoring.

Infrastruktur
PARL
Parliamentary
JPN
JPN Users
PDRM
PDRM Users
BI
Analytics Users
Public Cloud (Malaysia - Multi-AZ)
1. PRESENTATION LAYER
Parliamentary QnA AI
Web Auth (1000 MAU)
Response under 5s
JPN Chatbot
Translation BM+EN
Speech-to-Text
PDRM Chatbot
Text-to-Speech
OCR (10K pages)
Data Analytics
BI Tool + GenAI
100 Authors, 100 Readers
Web Application Firewall (WAF)
1 Web ACL, 10 Rules per ACL
DDoS Protection
Bot Detection and Rate Limiting
2. APPLICATION LAYER
Load Balancer
3x LB
1TB/month
App Servers
9x instances
8vCPU, 16GB
API Gateway
REST API
1.6GB Cache
Serverless Fn
100M req/mo
1024MB mem
Orchestration
Workflow Mgmt
100 req/hr
Container Registry
10GB Storage
Docker Images
Redis Cache
2vCPU, 8GB RAM
5GB Data, Multi-AZ
3. AI/ML LAYER
Foundation Models API
Multi-Model Access
• Anthropic Claude
• AI21 Labs, Cohere
• Meta, Stability AI
1B input + 1B output tokens/mo
10M in + 10M out tokens/mo LLM
Vector Database (RAG)
8vCPU, 16GB RAM
1000GB Storage
Semantic Search
Retrieval-Augmented
Generation Optimized
Multi-AZ Deployment
ML Training Platform
Training: 4 jobs/month
8hrs each, 4vCPU, 16GB
Inference: 4 models
640 hrs/month
200GB SSD Storage
Auto-scaling
LLM Inference Instances
2x GPU Instances
16vCPU, 64GB RAM
NVIDIA L4 Tensor Core
500GB Block Storage
3yr Savings Plan
Linux OS
AI Services Suite
Speech-to-Text: 9,600 min/mo
Text-to-Speech: 5,000 min/mo
Translation: BM+EN, 1M chars/mo
OCR: 10,000 pages/mo
Neural TTS Engine
Real-time and Batch Processing
Under 1s latency
4. DATA LAYER
MySQL DB
2x instances
16vCPU, 64GB
1TB SSD each
Multi-AZ
Auto-backup
NoSQL DB
3x databases
400KB items
1GB storage
1TB data storage
Standard Table
Data Warehouse
3 nodes
2vCPU, 16GB
1TB managed
On-Demand
Analytics Ready
Data Lake
5TB Object Store
Standard Storage
1M PUT requests
Versioning
Lifecycle Mgmt
ETL Pipeline
10 DPUs Spark
0.0625 DPUs Python
1 Data Crawler
Schema Discovery
Transform Jobs
Streaming
Real-time Analytics
5KB records
1 record/sec
Direct PUT
Data Stream
Storage
15TB Std
10TB Out
1TB Xfer
Encrypted
Redundant
5. INTEGRATION LAYER
API Integration
Existing Data Sources
Transit Gateway
5 Attachments
VPN Connection
2 Site-to-Site
Private Link
5 VPC Endpoints
Data Transfer
1TB Outbound
10TB from Storage
NAT Gateway
2 Endpoints, 1TB/mo
6. SECURITY LAYER
Threat Detection
1TB Volume Scan
100GB S3 Scan
VPC Flow Logs
1M Events
Security Hub
5 Accounts
10 Checks/Acct
1M Findings
Compliance
Secrets Mgr
100 Secrets
30-day rotation
Encrypted
Audit Logging
Key Mgmt (KMS)
5 CMKs
2M Symmetric Req
At-rest Encrypt
In-transit Encrypt
SPA Testing
Penetration Test
Internal + External
Vuln Assessment
Host Assessment
3rd Party Auditor
Compliance
OSA 1972
CGSO Guidelines
KDN Cyber Policy
Data Sovereignty
Malaysia Only
Monitoring
50 Metrics
200GB Logs
24x7 Alerting
SIEM Integration
7. DEVSECOPS LAYER
CodeBuild
ARM-based, Linux
CodeDeploy
10 instances, 100 dep/mo
CodePipeline
10 Active Pipelines
CI/CD Automation
Automated Testing, Security Scanning
Compliance Checks, Auto-deployment
Infrastructure as Code (IaC)
Automated Deployment, Version Control
Drift Detection, Change Management
8. NETWORK ARCHITECTURE
Multi-AZ Deployment
3 Availability Zones (Malaysia)
High Availability (99.80% SLA)
Auto-failover, Load Distribution
Geo-Redundancy
Data replicated across regions
Network Segmentation
VPC, Subnets, Security Groups
9. MANAGED SERVICES (MSP) - 24x7x365
Cloud Mgmt Platform
Unified Dashboard
Resource Provisioning
Self-Service Portal
Catalog Management
Support Services
24x7 Call Center
Email Support
1st Level Support
Ticket Management
Monitoring and Logging
Resource Monitoring
Event Management
SLA Tracking
Performance Reports
Billing and Cost Mgmt
Cost Estimation
Cost Planning
Custom Billing Alerts
Usage Analytics
Professional Services (2401 Mandays)
GenAI Foundation Design and Deployment
Multi-tenant Architecture Setup
Migration & Configuration Services
Training and Knowledge Transfer
24-month Support Contract
On-Premise Systems
Existing Data Sources Legacy Applications Internal Systems Active Directory
Project Management Office (PMO)
6-month Development 6-month Warranty Training and TOT

Tech Stack

Perkhidmatan AWS yang digunakan dalam platform KDN GenAI dengan penerangan lengkap untuk setiap komponen.

Tech Stack

AI AI & Machine Learning

BR
Amazon Bedrock

Platform fully managed untuk akses model AI seperti Claude. Menyediakan API bersatu untuk pelbagai model dengan keselamatan enterprise.

C3
Claude 3.5 Sonnet

Model LLM utama oleh Anthropic. Cemerlang untuk penaakulan kompleks, penulisan, dan pemahaman konteks BM/EN.

TE
Titan Embeddings

Model embedding untuk tukar teks ke vektor. Digunakan dalam RAG untuk carian semantik dokumen.

OS
OpenSearch

Vector database untuk simpan embeddings. Membolehkan carian semantik pantas untuk RAG pipeline.

TOK Token Metering & Usage Control

SOC Ref: 2.4.7 - Kawalan dan pemantauan penggunaan FM

Control Parlimen AI JPN PDRM Admin
Model Sonnet Haiku Haiku Sonnet
Max Input 6,000 2,000 2,000 4,000
Rate Limit 100/min 500/min 300/min 50/min
Daily Budget 500K tok 5M tok 3M tok 200K tok
CloudWatch
Token metrics
Cost Explorer
Daily spend
Budgets
80% alert
X-Ray
Latency trace

AI ASR, TTS & Translation Services

SOC Ref: 2.4.2, 2.4.3, 2.4.4 - Speech dan language services

Service AWS Capacity Languages Latency
Speech-to-Text Transcribe 9,600 min/mo BM, EN, Mandarin <1s streaming
Text-to-Speech Polly 5,000 min/mo BM Neural, EN <500ms
Translation Translate 1M chars/mo BM - EN <200ms
OCR Textract 10,000 pages/mo BM, EN <3s/page

Voice-Enabled Chatbot Flow

User speaks + Transcribe + Translate + RAG + LLM + Translate + Polly + Audio

Keselamatan & Pematuhan

Seni bina keselamatan komprehensif, kawalan akses identiti, dan langkah pencegahan kebocoran data untuk platform KDN GenAI.

Navigasi
SOC Requirements Coverage
1.1.8 - Security Architecture 1.3.15 - Data Leakage Prevention 2.1.1 - Security Controls 2.3.7 - IAM/WebAuthn

SEC Seni Bina Keselamatan - Defense in Depth

7 lapisan pertahanan untuk perlindungan menyeluruh

Layer 1: Edge Security
WAF, Shield Advanced, CloudFront
DDoS Protection | Bot Detection | Geo Blocking
Layer 2: Network Security
VPC, Security Groups, NACLs, PrivateLink
Network Isolation | Micro-segmentation | No Public IPs
Layer 3: Identity & Access
IAM, Cognito, SSO, MFA
Zero Trust | Role-Based Access | Session Management
Layer 4: Application Security
API Gateway, Lambda Authorizer, Input Validation
Request Validation | Rate Limiting | Schema Enforcement
Layer 5: Data Security
KMS, Macie, Secrets Manager
AES-256 Encryption | Key Rotation | PII Detection
Layer 6: AI Security
Bedrock Guardrails, Content Filters, Audit
Prompt Injection Block | Output Filtering | Model Invocation Logs
Layer 7: Detection & Response
GuardDuty, Security Hub, CloudTrail, SIEM
Threat Detection | Compliance Checks | Incident Response

Encryption at Rest

Algorithm: AES-256-GCM
Key Management: AWS KMS (CMK)
Key Type: Customer Managed Keys
Rotation: Automatic yearly
Scope: S3, RDS, EBS, OpenSearch, DynamoDB

Encryption in Transit

Protocol: TLS 1.3 (minimum TLS 1.2)
Certificates: AWS Certificate Manager
Internal: mTLS between services
HSTS: Enabled, max-age=31536000
Cipher Suites: ECDHE-RSA-AES256-GCM

Use Case

Empat aplikasi utama platform KDN GenAI dengan aliran kerja terperinci untuk setiap sistem.

Use Case

Parlimen AI

Sistem soal jawab berkuasa AI untuk membantu pegawai KDN menyediakan jawapan parlimen dengan mencari maklumat dari arkib Hansard, dokumen dasar, dan pekeliling secara automatik menggunakan teknologi RAG (Retrieval-Augmented Generation).

50K+ Hansard Pages BM/EN Bilingual 95% Citation Accuracy Response <5s
Aliran Proses Sistem
1
Terima Soalan
Soalan parlimen diterima
2
Cari Dokumen
RAG cari context relevan
3
AI Jana Draf
Claude 3.5 bina jawapan
4
Semak & Edit
Pegawai review jawapan
5
Submit
Hantar jawapan rasmi
1

Data Sources & Ingestion

Pengumpulan data dari sistem kerajaan

HAN
Hansard Archive
10+ tahun rekod perbahasan parlimen
50K+ Pages PDF/HTML
POL
Policy Documents
Dasar kerajaan dan pekeliling
Policies Circulars
LEG
Legislative Docs
Bills, acts, amendments
Bills Acts
ETL
ETL Pipeline
AWS Glue daily ingestion
Glue EventBridge
2

Document Processing

OCR, text extraction, metadata enrichment

OCR
OCR Textract
High accuracy BM/EN extraction
Textract 10K/mo
META
Metadata Extraction
Session dates, speakers, topics
Comprehend NER
CHK
Semantic Chunking
500-1000 tokens overlapping
LangChain Recursive
S3
S3 Storage Zones
Raw > Processed > Curated
S3 Versioning
3

Vector Indexing

Creating searchable semantic representations

EMB
Titan Embeddings
1536-dim multilingual vectors
Titan 1536-dim
OS
OpenSearch Index
k-NN plugin with HNSW
k-NN HNSW
HYB
Hybrid Search
Semantic + keyword filters
Hybrid Facets
INC
Incremental Updates
Delta processing via Step Fn
Step Fn Delta
4

Query Processing & Generation

Real-time RAG question answering

QRY
Query Analysis
Intent, entity, context
NLU Intent
RAG
RAG Retrieval
Top-K context retrieval
Top-10 Rerank
LLM
Claude Generation
Contextual answer synthesis
Claude 3.5 Bedrock
CIT
Citation Engine
Source attribution & links
Sources Links
Contoh Soalan & Jawapan
SOALAN PENGGUNA
"Apakah pendirian kerajaan mengenai rang undang-undang perlindungan data peribadi yang dibentangkan pada tahun 2023?"
JAWAPAN AI
Berdasarkan perbahasan Parlimen pada 3 Oktober 2023, Menteri Komunikasi dan Digital telah menyatakan bahawa Rang Undang-undang Perlindungan Data Peribadi (Pindaan) 2023 bertujuan untuk mengukuhkan perlindungan privasi rakyat Malaysia...
Sources:
Hansard DR 3 Okt 2023, ms. 45-48 Jawapan Bertulis PD-2023-1847
<5s
Query Response
50K+
Hansard Pages
95%
Citation Accuracy
BM/EN
Bilingual

RM Token & Cost Estimate (Per Query)

~6,000
Input Tokens
Query + RAG Context
~1,500
Output Tokens
AI Response + Citation
~500
Embedding Tokens
Titan Embed
$0.05
Est. Cost/Query
Claude 3.5 Sonnet
Model: Claude 3.5 Sonnet
Est. Queries/Month: ~500
Est. Monthly Cost: ~$25

BOT Chatbot Decision Logic

SOC Ref: 1.2.1 - Fallback, Escalation, dan Rule-Based Hybrid Logic

PT/Berfikiran Decision Flow

1
Input Validation Language, length, profanity, injection check
2
Intent Classification Rule-based + LLM: FAQ, Query, Complaint, Other
3
Knowledge Retrieval RAG pipeline, threshold score > 0.7
4
Confidence Check
HIGH >0.85: Direct MED 0.7-0.85: +Disclaimer LOW <0.7: Escalate
5
Escalation/Fallback Human agent, Hotline, atau Form
Trigger Action Response
Confidence < 0.7 Soft fallback "Maaf, saya tidak pasti. Sila hubungi..."
No relevant docs Hard fallback "Tiada maklumat berkaitan..."
Sensitive topic Immediate escalation "Memerlukan pegawai..."
3x low confidence Auto-escalation "Sambung dengan pegawai..."

BI BI/Analytics Module Architecture

SOC Ref: 1.2.1(c) - Analytics dan data visualization

Analytics Data Pipeline

Sources (RDS, DynamoDB) + ETL (Glue) + Redshift + SPICE Cache + QuickSight + QuickSight Q (GenAI)
Dashboard Features
Interactive charts | Drill-down | Scheduled reports | Export PDF/Excel
QuickSight Q (GenAI)
Natural language queries | Auto-generate visuals | BM/EN support
Access Control
100 Authors | 100 Readers | Row-level security | Agency isolation

Jadual Pelaksanaan Projek

Berdasarkan keperluan SOC: 6 bulan pembangunan, 6 bulan jaminan, 24 bulan perkhidmatan cloud.

Fasa / Aktiviti
B1B2B3B4B5B6 B7B8B9B10B11B12 B13B14B15B16B17B18 B19B20B21B22B23B24
F0
Setup Infrastruktur Landing Zone, GitLab CI/CD
F1
Parlimen AI Dev + SIT + UAT
F2
Chatbot JPN Dev + SIT + UAT
F3
Chatbot PDRM Dev + SIT + UAT
F4
SPA & FAT Pentest, Remediation, FAT
F5
Tempoh Jaminan Warranty, Bug Fixes, Support
F6
Cloud Operations Managed Services, Multi-Tenant
Milestones
PAR
JPN
PDR
FAT
Setup
Pembangunan
SPA/FAT
Jaminan
Operations
Go-Live

Butiran Setiap Fasa

Fasa 0-4: Pembangunan

Bulan 0 hingga 6
  • F0: Setup Landing Zone, GitLab CI/CD, Security baseline
  • F1: Parlimen AI - RAG pipeline, Knowledge Base, UAT
  • F2: Chatbot JPN - NLU, Integrasi API, UAT
  • F3: Chatbot PDRM - Saman query, Laporan, UAT
  • F4: SPA (Internal + External Pentest), PAT, FAT

Fasa 5-6: Operasi

Bulan 6 hingga 24
  • F5: Tempoh jaminan 6 bulan selepas Go-Live terakhir
  • F5: Bug fixes, performance tuning, user support
  • F6: Cloud managed services 24x7
  • F6: Monitoring, logging, cost optimization
  • F6: Preparation untuk multi-tenant expansion

Serahan Utama (Key Deliverables)

1
Bulan 1 Landing Zone + CI/CD siap
2
Bulan 3 Go-Live Parlimen AI
3
Bulan 4.5 Go-Live Chatbot JPN
4
Bulan 5.5 Go-Live Chatbot PDRM
5
Bulan 6 FAT + SPA Complete
6
Bulan 24 Contract End

DETAILED Pecahan 6 Minggu: Parlimen AI (Fasa 1)

Bagaimana kami mampu delivery dalam 6 minggu - aktiviti mingguan terperinci

W1-2 Foundation
  • ✓ S3 bucket structure setup
  • ✓ OpenSearch Serverless cluster
  • ✓ Bedrock Knowledge Base config
  • ✓ IAM roles & policies
  • ✓ Hansard PDF ingestion (~500 docs)
Output: RAG pipeline ready, 500 docs indexed
W3-4 Development
  • ✓ Frontend React chat UI
  • ✓ Backend API (ECS Fargate)
  • ✓ Claude 3.5 Sonnet integration
  • ✓ Citation/source display logic
  • ✓ Cognito auth + AD integration
Output: Working prototype in DEV env
W5-6 Testing & Go-Live
  • ✓ SIT (System Integration Test)
  • ✓ UAT with KDN users
  • ✓ Performance testing (<3s latency)
  • ✓ Security hardening
  • ✓ Production deployment
Output: 🚀 GO-LIVE Parlimen AI

👥 Resourcing - Pasukan Terlibat (Fasa 1)

1
Tech Lead
Full-time
2
Backend Devs
Full-time
1
Frontend Dev
Full-time
1
DevOps
Part-time
1
QA Engineer
W4-6
Total: 4-5 FTE untuk 6 minggu = ~200 man-days | Kenapa mampu: AWS managed services handle infrastructure, kita fokus business logic sahaja

Projek Akan Datang

Integrasi AI untuk sistem sedia ada KDN - bermula dengan iLPF (Sistem Penapisan Filem).

iLPF

iLPF - Sistem Penapisan Filem

AI Content Moderation untuk Lembaga Penapisan Filem KDN

Projek Akan Datang

Integrasi AI video understanding ke dalam sistem iLPF sedia ada untuk automasi proses tapisan kandungan filem, iklan, trailer, dan video digital. Menggunakan Twelve Labs Embed API untuk multimodal video understanding - analisis visual frames, audio transcription, dan semantic context secara serentak.

1

Video Ingestion & Processing

Upload dan pemprosesan fail video

S3
Video Storage
S3 Bucket encrypted at rest
MP4 MKV MOV
λ
Pre-processor
Lambda trigger on upload
Validate Metadata
EMC
MediaConvert
Transcode to standard format
H.264 720p
SQS
Job Queue
SQS FIFO for processing
FIFO DLQ
+
2

Twelve Labs Video Understanding

Multimodal AI analysis engine

Twelve Labs API
Marengo Embed
Multimodal embedding untuk video - gabungan visual, audio, dan teks ke vector space untuk semantic search dan similarity matching.
1024-dim vectors
Pegasus Generate
Video-to-text generation untuk summarization, scene description, dan automatic content classification berdasarkan LPF guidelines.
Scene Summary
Search API
Natural language query untuk cari adegan spesifik: "cari scene keganasan" atau "cari dialog tentang dadah".
Semantic Search
Classification
Custom trained classifier untuk kategori tapisan Malaysia: keganasan, seksual, dadah, agama, politik, bahasa lucah.
Custom Labels
+
3

Content Flagging & Classification

Auto-detect kandungan bermasalah

Keganasan
Violence, gore, weapons
Seksual
Nudity, explicit content
Dadah
Drug use, promotion
Agama
Religious sensitivity
Politik
Political content
Bahasa
Profanity, vulgar
Output per Flagged Scene:
{
  "timestamp": "01:23:45",
  "duration": "8.5s",
  "category": "violence",
  "confidence": 0.94,
  "description": "Fight scene with blood",
  "recommendation": "POTONG atau BLUR"
}
+
4

Review Dashboard & Decision

Pegawai LPF semak dan buat keputusan

VID
Video Player
Jump to flagged timestamps
RPT
AI Report
Summary semua flagged content
DEC
Decision Panel
Lulus / Potong / Tolak
CRT
Certificate
Generate sijil kelulusan
Klasifikasi Filem Malaysia:
U - Umum P13 - Bimbingan 18 - Dewasa Tidak Lulus
+
5

Learning Loop & Continuous Improvement

Feedback pegawai untuk improve model accuracy

Continuous
AI
AI Prediction
+
REV
Pegawai Review
+
LOG
Correction Log
+
ML
Retrain Model
+
Feedback Capture
Setiap pembetulan pegawai direkod - false positives, false negatives, category misclassification, confidence threshold adjustments.
PostgreSQL Audit Log
Training Dataset
Bina dataset tapisan khusus Malaysia dari keputusan pegawai - labeled examples untuk setiap kategori (keganasan, seksual, dadah, etc).
S3 Dataset Versioned
Model Fine-tuning
Scheduled retraining bulanan dengan Twelve Labs custom classifier API - incorporate Malaysian cultural context dan sensitiviti tempatan.
SageMaker Monthly
Accuracy Tracking
Dashboard monitor precision/recall per category, drift detection, dan A/B testing untuk model versions baru sebelum production deployment.
CloudWatch Grafana
Expected Improvement Over Time
Month 1-3: 85% accuracy (baseline) Month 6: 92% accuracy Month 12: 97%+ accuracy Ongoing: Adapt to new content trends

Technology Stack

AI/ML
Twelve Labs Marengo Pegasus
AWS Compute
Lambda SQS MediaConvert
Storage & DB
S3 PostgreSQL OpenSearch
MLOps
SageMaker CloudWatch Grafana
90%
Pengurangan Masa
5x
Throughput Filem
95%+
Detection Accuracy
24/7
Auto Processing